Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 436: 114074, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36028001

RESUMO

Functional near-infrared spectroscopy (fNIRS) has been established as an informative modality for understanding the hemodynamic-metabolic correlates of cortical auditory processing. To date, such knowledge has shown broad clinical applications in the diagnosis, treatment, and intervention procedures in disorders affecting auditory processing; however, exploration of the hemodynamic response to auditory tasks is yet incomplete. This holds particularly true in the context of auditory event-related fNIRS experiments, where preliminary work has shown the presence of valid responses while leaving the need for more comprehensive explorations of the hemodynamic correlates of event-related auditory processing. In this study, we apply an individual-specific approach to characterize fNIRS-based hemodynamic changes during an auditory task in healthy adults. Oxygenated hemoglobin (HbO2) concentration change time courses were acquired from eight participants. Independent component analysis (ICA) was then applied to isolate individual-specific class discriminative spatial filters, which were then applied to HbO2 time courses to extract auditory-related hemodynamic features. While six of eight participants produced significant class discriminative features before ICA-based spatial filtering, the proposed method identified significant auditory hemodynamic features in all participants. Furthermore, ICA-based filtering improved correlation between trial labels and extracted features in every participant. For the first time, this study demonstrates hemodynamic features important in experiments exploring auditory processing as well as the utility of individual-specific ICA-based spatial filtering in fNIRS-based feature extraction techniques in auditory experiments. These outcomes provide insights for future studies exploring auditory hemodynamic characteristics and may eventually provide a baseline framework for better understanding auditory response dysfunctions in clinical populations.


Assuntos
Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Hemodinâmica/fisiologia , Hemoglobinas , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 3063-3073, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33206606

RESUMO

OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) has recently gained momentum in research on motor-imagery (MI)-based brain-computer interfaces (BCIs). However, strikingly, most of the research effort is primarily devoted to enhancing fNIRS-based BCIs for healthy individuals. The ability of patients with amyotrophic lateral sclerosis (ALS), among the main BCI end-users to utilize fNIRS-based hemodynamic responses to efficiently control an MI-based BCI, has not yet been explored. This study aims to quantify subject-specific spatio-temporal characteristics of ALS patients' hemodynamic responses to MI tasks, and to investigate the feasibility of using these responses as a means of communication to control a binary BCI. METHODS: Hemodynamic responses were recorded using fNIRS from eight patients with ALS while performing MI-Rest tasks. The generalized linear model (GLM) analysis was conducted to statistically estimate and evaluate individualized spatial activation. Selected channel sets were statistically optimized for classification. Subject-specific discriminative features, including a proposed data-driven estimated coefficient obtained from GLM, and optimized classification parameters were identified and used to further evaluate the performance using a linear support vector machine (SVM) classifier. RESULTS: Inter-subject variations were observed in spatio-temporal characteristics of patients' hemodynamic responses. Using optimized classification parameters and feature sets, all subjects could successfully use their MI hemodynamic responses to control a BCI with an average classification accuracy of 85.4% ± 9.8%. SIGNIFICANCE: Our results indicate a promising application of fNIRS-based MI hemodynamic responses to control a binary BCI by ALS patients. These findings highlight the importance of subject-specific data-driven approaches for identifying discriminative spatio-temporal characteristics for an optimized BCI performance.


Assuntos
Esclerose Lateral Amiotrófica , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Imaginação , Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte
3.
J Neural Eng ; 16(6): 066036, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31530755

RESUMO

OBJECTIVE: Despite the high prevalence of non-motor impairments reported in patients with amyotrophic lateral sclerosis (ALS), little is known about the functional neural markers underlying such dysfunctions. In this study, a new dual-task multimodal framework relying on simultaneous electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) recordings was developed to characterize integrative non-motor neural functions in people with ALS. APPROACH: Simultaneous EEG-fNIRS data were recorded from six subjects with ALS and twelve healthy controls. Through a proposed visuo-mental paradigm, subjects performed a set of visuo-mental arithmetic operations. The data recorded were analyzed with respect to event-related changes both in the time and frequency domains for EEG and de/oxygen-hemoglobin level (HbR/HbO) changes for fNIRS. The correlation of EEG spectral features with fNIRS HbO/HbR features were then evaluated to assess the mechanisms of ALS on the electrical (EEG)-vascular (fNIRS) interrelationships. MAIN RESULTS: We observed overall smaller increases in EEG delta and theta power, decreases in beta power, reductions in HbO responses, and distortions both in early and later EEG event-related potentials in ALS subjects compared to healthy controls. While significant correlations between EEG features and HbO responses were observed in healthy controls, these patterns were absent in ALS patients. Distortions in both electrical and hemodynamic responses are speculated to be associated with cognitive deficits in ALS that center primarily on attentional and working memory processing. SIGNIFICANCE: Our results highlight the important role of ALS non-motor dysfunctions in electrical and hemodynamic neural dynamics as well as their interrelationships. The insights obtained through this study can enhance our understanding of the underlying non-motor neural processes in ALS and enrich future diagnostic and prognostic techniques.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Eletroencefalografia/métodos , Hemodinâmica/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia
4.
Am J Transplant ; 14(11): 2500-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25307148

RESUMO

Protection of endothelial cell function may explain the benefits of nonoxygenated hypothermic machine perfusion (MP) for marginal kidney preservation. However, this hypothesis remains to be tested with a preclinical model. We postulated that MP protects the nitric oxide (NO) signaling pathway, altered by static cold storage (CS), and improves renal circulation recovery compared to CS. The endothelium releases the vasodilator NO in response to flow via either increased endothelial NO synthase (eNOS) expression (KLF2-dependent) or activation of eNOS by phosphorylation (via Akt, PKA or AMPK). Using a porcine model of kidney transplantation, including 1 h of warm ischemia and preserved 24 h by CS or MP (n=5), we reported that MP did not alter the cortical levels of KLF2 and eNOS at the end of preservation, but significantly increased eNOS activating phosphorylation compared to CS. eNOS phosphorylation appeared AMPK-dependent and was concomitant to an increased NO-dependent vasodilation of renal arteries measured, ex situ, at the end of preservation. In vivo, laser Doppler showed that cortical microcirculation was improved at reperfusion in MP kidneys. In conclusion, we demonstrate for the first time, in a large-animal model, that MP protects the NO signaling pathway, confirming the value of MP for marginal kidney preservation.


Assuntos
Hipotermia Induzida , Isquemia/fisiopatologia , Rim/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Animais , Isquemia/enzimologia , Masculino , Fosforilação , Reperfusão , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...